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The quantum electromagnetic field in multiply connected 
space 

Rafael Sorkint 
Department of Applied Mathematics and Astronomy, University College, PO Box 78, 
Cardiff, UK 

Received 24 January 1978 

Abstract. A gauge-invariant and microscopically causal theory of the sourceless elec- 
tromagnetic field in a topologically arbitrary globally hyperbolic asymptotically flat 
background metric is proposed. The topology manifests itself in an algebra of superselected 
quantities, one of which is the net (apparent) charge. Relative to a particular Cauchy 
hypersurface, the field resolves into a ‘Coulombic’ part generating the above algebra and a 
‘radiative’ part expressible in terms of photon creation and destruction operators. An 
appendix extends ‘Hodge theory’ to non-compact, but asymptotically-flat three-manifolds. 

1. Introduction 

In an earlier paper (Sorkin 1977) I described a ‘quasi-local’ model of electric charge 
based on the sourceless Maxwell equations in a space-time with suitable topology. 
More specifically, the metric, which was treated as a background, was assumed to be 
temporally but not necessarily spatially orientable, with all topological complications 
confined to a spatially compact region, K. It followed then-with F&,, being identified 
contrary to custom as an axial rather than a polar tensor-that K can never display net 
magnetic charge but can display net elecrric charge in the non-orientable case-at least 
for the ‘non-orientable handle’ I described. 

In order to bring the above model closer to reality it would be necessary to 
incorporate the metric as a dynamical field and then to quantise the entire system. The 
present papei undertakes only a small part of this task-uantisation of the elec- 
tromagnetic field in an unquantised background metric. As a by-product, we will get in 
9 4 a comprehensive answer to the question, posed implicitly in Sorkin (1977), of 
the relation between the topology of a space-time and the character of the purely 
classical electromagnetic fields it admits. (See also lemma 2 of the appendix.) 

The terminology of the present paper (some of which is described in more detail in 
the appendix) agrees with that of Sorkin (1977); units are chosen so that c = h = 4 m 0  = 
1; ‘A h B’ means A B  = B A ;  ‘ A  := B’ means that the equation A = B defines A .  

2. Maxwell’s equations in ‘3 + 1 form’ 

While it might be preferable to work directly with the four-dimensional field Fwy, one of 
the mathematical tools we will need-Hodge theory- seems to have been forged only 

t Present address: Box 14, Enrico Fermi Institute, 5630 Ellis Avenue, Chicago, Illinois 60637, USA. 
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404 R Sorkin 

in the context of manifolds with positive-definite metric. In addition, the notion of 
canonical quantisation seems to depend inevitably on the existence of Cauchy hyper- 
surfaces. Let us therefore consider a foliation of the space-time M into suitable 
space-like hypersurfaces t = constant and describe Fcly relative to a particular one of 
these, 2, using a local system of coordinates in which x o  = t .  

If yjk, with inverse y i k ,  is the induced metric on X then in our chosen coordinates 
Y j k  = g j k  while, as is then easily checked, 

(2.1) Y i k  = g i k  - g O j g O k / g O O .  

The field FLly is most naturally resolved into magnetic and electric parts by defining 
B .  = F .  

i k  ik9 

which is the ‘pull-back’ of F to 2, and 
gk = @ k  

(2.2) 

(2.3) 

(where 9”” := J<g”“g”’FaB), which might be called the ‘intersection’ of 9”” with 
2. It is well known that the former, and can also be shown? that the latter, is a tensorial 
quantity in X; in particular the components Bik (= -Bki) and g k  depend only on the 
choice of coordinates in 2 itself. Moreover, since 2 is by assumption externally 
oriented (as defined by Sorkin (1977)) an (internal) orientation of X at x E X is 
equivalent to one of M there. Therefore the postulated axial character of Fey (hence 
also of S””) is inherited by Bjk and g k  which are accordingly an axial two-form and an 
axial vector density$. 

Let us write Maxwell’s equations as 

a A F := a,F,, + apYa + a$“, = o 

a i  9 := a,$”“ = 0. 

(2.4) 
and dually 

(2.5) 
When time and space indices are distinguished explicitly each of (2.4) and (2.5) gives 
rise to one ‘initial-value constraint’ and one ‘evolution equation’. The constraint pair 
comes already expressed in terms of B and 8 :  

(2.6) a A B := aiB,k + ajBki -k d&i, = 0 

a i 8  := d k g k  = o ;  (2.7) 

doBjk  + d F k 0  - d k 4 . 0  = 0 

but the evolution pair involves further components of F+” and 9””: 

(2.8) 

(2.9) aogk + aisik = 0. 

We therefore have to express Fko and gik in terms of B and 8. 

t The most direct way to see this is through the easy-to-verify equality 
= 2ea6rrv9”y 

which displays i f k  as the dual (in X) of the pull-back to X of the dual (in M )  of 9””. Here, as throughout, 
Greek indices range from 0 to 3, italic from 1 to 3 and has components rtl or 0 in any coordinate system. 
$Eschewing axial quantities, one could work with *Fwv := ~ c , , ~ ~ ’ ,  E,,,,, := <,,kifk and ak := frkabBab. 
Alternatively, one could highlight the symmetry between electric and magnetic fields by using either of the 
pairs E,,, B,, or gk, % k .  
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In preparation for this, note that the determinants of Y j k  and g,, are related by 

goog  = Y (2.10) 

and define 

Igl”21 Y P2 = l g 0 O 1 - ’ / 2  = 

N k  = gok//goO1 = - g o k / g o O  
(2.11) 

(2.12) 

which are the customary ‘lapse’ and ‘shift’ functions conforming to our particular choice 
of coordinates. (Geometrically v and N k  give respectively the length and the orthog- 
onal projection into % of the vector d/at which joins one hypersurface x o  = constanJ to 
the ‘next’.) We will, of course, raise and lower italic indices with Y j k  and use J y  to 
convert between % tensors and %-tensor densities. 

Now 
Fok = Fok 

Fomgmk = gooFok f g o ’ e k ,  

which in the light of (2.2), (2.3) and (2.10)-(2.12) becomes 

(2.13) 

(2.14) 

(2.15) 

Substituting these results into (2.8) and (2.9) yields the evolutionary Maxwell’s 

(2.16) 

equations in the form? 

aB,k/dt -t 8, A (vEk - NaBak) = 0 

t Notice the well known symmetry of these equations, as well as of (2.6) and (2.7), with respect to the 
‘dualisation’ 

B + *24  = em,kZSk 

+ -*B = -1 
2 B m n ,  

In fact, explicit use of this symmetry, which derives from that of (2.4) and (2.5), would allow one to pass 
directly from (2.16) to (2.17) without ever having evaluated Pik, and similarly to avoid half of the verifications 
in 8 3 below. (Note however that dualisation changes axial to polar and therefore does not in general make 
sense globally.) 
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agk/ar +ai(vBjk - N’ A g k )  = 0. (2.17) 

Here, of course, ai A xk means a ) x k  - a k x j .  

In this form the equations look coordinate dependent since v and N k  involve 
particular components of g”“. But by introducing explicitly the vector field d/dt with 
components 5” = 8;  we can interpret them in afully ‘geometrical’ manner as governing 
the change in 8 and B when one moves along 6’ from X(O)=X to % ( E )  where 
%(s) := {x E M  1 r(x) = s}. For under the interpretation of a / a t  as the ‘Lie derivative’t, 
&, of N k  as the orthogonal projection of 5” into X, and of v as the distance from X ( 0 )  to 
% ( E )  each term of (2.16) and (2.17) acquires a covariant meaning. By defining v to be 
negative when 5” points backward in time with respect to X we can even free 5” 
altogether from being tied to any local coordinate system whatever. Written in an 
index-free notation the thus reinterpreted equations read 

(2.18) 

f 8 + a_J (v% - N A 8) = 0 (2.19) 

in which the densities 8 and B are implicitly contravariant while E and B are implicitly 
covariant, and where v, N k  are derived from 5” as just described. 

We get a final simplification by using a connecting vector 6” which is perpendicular 
to X. In this case N k  = 0, v = sgn(5°)1151) and with the notation X := f tX the evolution 
equations approach very closely to their flat-space appearance: 

c 

B + a  A (WE) = 0 

+ a A( v 3 )  = 0. 

(2.20) 

(2.21) 

For future reference let us evaluate the ‘5 momentum’ P[[, X] associated with an 
arbitrary vector field 5” and the hypersurface X: 

(2.22) 

Working for convenience in a local system in which, as before, 5” = 8,” and x o =  r, we 
find 

du, = X: d3x 

and 

x: = @ k F o k  - i (2PkFok f 9 1 k F , k )  

= -- f (8 k F k o  + f g”B,k) 

= -; [gk(vEk -N’Bjk) + 4 ( V B ’ k  - N ’  A sk)Bjk]  

$Strictly speaking, ‘E&’, for example, does not make sense since B is not a two-form in M but only one in 
X ( s )  for each s. What d B / J r  really represents is 

(aT(s)*B(s)/as)l,=O 

where X = X(O), B ( s )  is F,, restricted to X ( s ) ,  and T ( s ) * E ( s )  is B ( s )  pulled back from X ( s )  to X via the 
identification of their points set up by 5”. Thus ‘Ec’ as used here is a generalisation-but an obvious o n e - o f  
the usual notation. 
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with the help of (2.13) and (2.15). Since the result is again covariant, we can perform 
the integration to obtain 

P[& XI= -~(8"E,+~~'""B,,)v+N"B,,8" d3x (2.23) 

where-as always-v and N are related to 6" as before. 

3. Formal quantisation 

As throughout this paper, let M be a time-oriented space-time, suitably regular at 
spatial infinity, and such that through each event there passes an asymptotically flat 
Cauchy hypersurface. We seek to specify commutation relations for Fsy ( x )  which 
vanish at space-like separations ('microscopic causality'), are compatible with Max- 
well's equations, and for which the (formal) operator P[6, %] of equation (2.23) 
generates a deformation along 5. 

To this end, let us pick a Cauchy hypersurface and introduce therein the invariant 
bi-tensor 

S j ( x ,  Y ) ~  

in which j is a covariant index of weight 0 at x and k is a contravariant index of weight 1 
at y, and which is defined by 

' % i ( X ) S j ( X ,  Y)kAk()') d3X d3y = %'(x)Aj(x) d3x 

for all test vector fields Ai(x) and test vector densities 9 1 k ( x ) .  In any local coordinate 
system S has the components 

(3.1) 

which transform, as is easily checked, consistently with the character assigned to them 
above. 

In analogy with the flat-space situation we impose relative to 22' the commutation 
relationsf 

S j ( X ,  y ) k  = 6 ; S ( x  - y), 

(To avoid confusion note that the wedge refers not to any suppressed indices but-just 
as in (2.15)-(2.17)-to m and n themselves.) 

Together with Maxwell's equations and the reality conditions 

+ Observe that these commutation relations possess the dualisation symmetry discussed in the footnote to 
(2.16) and (2.17). 
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the commutation relations (3.2) specify fully the quantum algebra, a, of our 
system?. 

Let us rule out any obvious incompatibility$ of (3.2) with the initial-value con- 
straints (2.6) and (2.7) on %‘by showing that the commutators of the latter with 8 and B 
vanish identically. 

For (2.6) the calculation of the non-trivial commutator is trivial: 

Car A B,,(x), gk(y)]= -i 

since a A a = 0. For (2.7) we integrate 

i[Bmn(x), a k 8 k ( y ) l = a k ( y ) a m ( X )  A 6n(x, y I k  

A am A s,(x, y ) k  = o 

(3.4) 

against an arbitrary function of compact support, f ( y ) ,  to show that it vanishes. But by 
definition 

I f ( Y ) a x ( y )  Y l k  d3y = - / a & )  &(X, Y l k  d3y 

= -3,f (x)  
so that 

k 3  Ifiv) a k ( y )  am(x) A 6, (x, y )  d Y = - a m  A ad(x)  = 0 

as required. (Notice by the way that the first half of the calculation just says 
d k ( y )  &(x, y )  = -a,(x) S(x, y ) ,  which could have been substituted directly into (3.4).) 

As for compatibility with the remaining pair of Maxwell’s equations, that will follow 
from the existence of a ‘Hamiltonian’ generating the deformation via 8” of one 
hypersurface %’ to a neighbouring one. Because the ‘canonical commutation relations’ 
(3.2) take the same form on each hypersurface we can be optimistic that such a 
‘Hamiltonian’ exists. Let us verify that, in fact, P[& 92’1 is the anticipated generator; i.e. 
that 

k 

[m, %‘I, X ( x ) l =  i f X(X) 
t 

where ‘X’ stands for one of the ‘canonical’ quantities g k ,  Bm, and where x E 2. 
From (2.23) we have for B 

[P[& %‘I, B (x)l 

(3.5) 

J 

+ I have been vague about just what sort of algebra I2 is supposed to be. However, the concern of this paper is 
to discover specifically topological effects, not to worry about the mathematical problems common to any 
quantum field theory in curved space-time, which, as will appear in § 5 ,  are neither better nor worse here than 
they are when topological complications are absent. 

To form a more concrete idea of ‘U, one could imagine it (conforming to the wording of the present section) 
as an algebra of operators in Hilbert space; a more ‘algebraic’ attitude will be adopted in 8 4. 
$ From the ‘algebraic’ point of view of B 4 compatibility means that ‘U is not reduced to the zero algebra, i.e., 
that 11 # 0.1. That there is no hidden incompatibility follows from the fact that ‘U possesses non-trivial 
representations in Hilberhpace, as will appear in 8 5 .  
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= i J i ( v a m n  -N" A ~ ) ( y )  a m ( y )  A s,(Y, x l k  d3y 

=- ia , (vB-N~8)""  

= i f 8  
5 

according to (2.19). 
On the basis of (3.5) it is now easy to complete our discussion of compatibility. Let 

[X, Y] = 2 represent any one of the basic commutation relations (3.2). If f5 is as above, 
then since Z is in all cases an invariant bi-tensor defined in 2, f, 2 = 0. As for 2, [X, Y] 
we have from (3.5) and the Jacobi identity 

i i [ x ,  Q Y I = [ ~ ~ x ,  Y]+[X,~;  Y] 

= [[P, XI, YI + [X, [e YII 

= [R [X, Yl1 

= cp, 21 
= O  

since 2 is a c number. Thus (3.2) is preserved by fS. 

4. Superselection and homology 

The formal quantisation just completed has furnished an algebra? l?l purporting to be 
the quantum algebra of the system 'free electromagnetic field in background metric 
gry'. Ordinarily we would now try to find elements of '21 playing the roles of creation 

t Explicitly E is the free * algebra on generators { F W v ( x ) / x  E M}u{U} modulo the relations comprised in 
Maxwell's equations (2.4) and (2.5). the reality conditions (3.3) and the commutation relations (3.2) (as well as 
the relations specifying that U is the unit element of E). 
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and annihilation operators and then represent ‘U in the corresponding Fock space. In 
other words, we would interpret ‘3 as describing a system of photons. However, for 
curved metrics where the notion of particles becomes much more problematic, such an 
approach is not necessarily appropriate. Instead let us pursue our main concern-as to 
what becomes in quantum theory of the sort of classical solutions discussed by Sorkin 
(1977)-solely with reference to the quantum algebra ‘U, 

The new quantity of greatest interest which arises when space is non-orientable is 
undoubtedly the total charge, expressed relative to the hypersurface X as 

(4.1) 

where S is any two-sphere enclosing the whole region K of multiple connectivity. 
Notice that the integrand is a true scalar only if S is interpreted as a surface with given 
internal orientation, so that a change in local orientation changes the signs of both %and 
du. But to (internally) orient S is equivalent to choosing a ‘right-hand rule’ for the 
asymptotic region 22‘-K. Thus Q is what might be called an axial scalar defined at 
infinity. Recall also that Q depends only on the (internally oriented) two-surface S and 
not on the three-surface 2 in which S is embedded, as appears, e.g., in the four- 
dimensional expression 

Q = 9 (*F),, dz:””, 
S 

both factors of whose integrand are polar four-tensors. 
From (4.1) it is easy to see that Q is in the centre of ‘U, that is that Q b, A for all A E a. 

In fact, if x is any point of X then we can assume x g  S :  if by mischance x does meet S,  
just deform S slightly! This being given, (3 .2 )  leads immediately to Q b, %(x) and 
Q B ( x ) ,  and thence to Q b, ‘U since for all x E M ,  F,,(x) is linearly dependent (via 
Maxwell’s equations) on the set {a(x), B ( x ) l x  E X}. 

Since Q commutes with every element of a, no measurement of such an element- 
in other words, no measurement of any quantity associated with the system-can induce 
transitions in the value of Q. Therefore for a particular representation of in a Hilbert 
space 6, phase relations between sectors of 6 characterised by different values of Q are 
unobservable. One says that Q is ‘superselected’ and one can call any (self-adjoint) 
central element of ‘U a ‘superselection rule’. In the present theory, then, superselection 
of total charge, something which is often asserted on experimental grounds, appears as a 
theoretical consequence of Maxwell’s equations and microscopic causality. 

It seems, then, that the interesting features of ‘U are associated with superselection 
rules. In fact any flux integral of the form (4.1) but with S an arbitrary closed internally 
oriented two-surface (not necessarily a two-sphere!) furnishes a quantity C which, by 
precisely the same reasoning as before, is also superselected. 

Of course, not every S yields a different C. Two surfaces S’ and S“ which give the 
same C for every possible divergence-free axial field gk are said to be homologous. 
(Conversely if some S is not homologous to zero thent there will be some (c-number) 
fieid sk(x) for which $,8 d u  # 0. Using this 8 together with B = 0 as initial data in 
Maxwell’s equations as given in P 2 we recover a classical solution with non-zero flux 
through S. This answers the question posed in the introduction about how to charac- 
terise all the classically conserved quantities associated with the topology.) Cor- 

t In  the notation of the appendix, IT2(% R) = H(K 6, -, l)*, which is proved as equation (A.14). 
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responding to every homology class of two-surfaces (more precisely to every generator 
of H2(%, R)) there is a possible ‘electric’ superselection rule. We could go on now to 
show that no other candidates can arise, but this will emerge anyway from the more 
complete analysis to be made in § 5 with the aid of ‘Hodge theory’. 

The situation with the ‘magnetic’ superselection rules is similar: they also cor- 
respond to closed two-surfaces (this time externally oriented) or rather to equivalence 
classes of such which are homologous in an appropriate sense. The corresponding 
homology group turns out (A.17) to be HI(%, R). 

Finally, let us apply these insights to a particular topology discussed by Sorkin 
(1977)-the non-orientable handle. It is not hard to see that Hz(%’, R) is one dimen- 
sional, a generator for it being given by a sphere S‘ surrounding either mouth of the 
handle. (At first sight one might conclude that the ‘two-sphere at infinity’, S, provides 
an independent generator, but as shown in effect by Sorkin (1977), this S is homologous 
to twice S’ . )  The corresponding superselected quantity is of course (half) the total 
charge. Similarly a generator for HI(%, R) is any loop linking the handle whence there 
is exactly one magnetic superselection rule, governing the ‘dipole moment’ of the 
handle. 

5. The ‘radiative’ part of F 

The last section showed that our algebra contains superselected quantities which 
remain, in a sense, ‘unquantised’. The present section will show how, relative to a 
particuiar Cauchy hypersurface %’, one can identify these quantities with a definite 
component of the field and separate them off leaving behind a ‘radiation field’ pFy 
whose understanding involves only those problems familiar from, say, the quantisation 
of a massless scalar field in a curved but topologically trivial space-time. Difficult as 
these problems (definition of vacuum, regularisation of T,,, etc) are, at least the 
topological complexity of %’ will not have added to them. (The notation for what 
follows is set forth in the appendix.) 

So far we have not had to worry about regularity conditions for FFY. In the 
sequel, though, we will assume that both Ek := /yj-1’2y;,,,%m and B are square- 
integrable on %‘, in other words that E E 9’-(%’) and B E 9 -(%). According to (2.23) 
this is necessary in order that the total energy (which makes sense since % is 
asymptotically flat) be finite. 

Since B E @ the Kodaira theorem of the appendix decomposes B into a sum of two 
terms (the third being absent since d B  = 0) 

B = i + B  (5.1) 
- 

where 5 E d9’ -  and B E Kz-, so that d B  = S B  = 0. Similarly 

E = E + E  

where E 5 and l? E K2.  
Now let e E $=. b E and define 

(5 .2 )  

[b le1 = [((b, B)),  ( (E,  e ) ) ] .  (5.3) 
It is clear that this formation defined on 9 contains the complete commutation 
relations in as much as the 2’ forms B and E can be expanded in terms of such functions 

7 - 7  x 9 
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b and e. (The coefficients in the expansion will, of course, be elements of % or 
‘q-numbers’.) 

From (3.2) it is easy to evaluate (5.3): 

[ b  le1 = J J $ d a b ( X ) [ B a b ( X ) ,  g k ( y ) k k ( y )  d3x d3y 

= -i I [ J a b ( x )  d a ( x )  & ( x ,  y)kek(y) d3X d3y 

= -i bab aaeb d V  

=: -i ( ( 6 ,  de)) 

J 
1/2  ab (where of course d a b  := ( y /  b 1. Thus 

[ b  1 e ]  = -i((6, de)) = i((66, e)). (5.4) 

In particular, if either b or e is in K2 then [ b  1 e]  = 0. But B (for example), being the 
K 2  component of B in the decomposition (A.7), can be expanded in terms of an 
orthonormal basis of functions in K2: 

( 5 . 5 )  

P n  = B ) ) ,  

whence, if e is arbitrary, 

[ B ( x ) ,  ( (E,  e ) ) ]  = C b n ( x ) [ P n ,  ((€9 e ) ) ]  
n 

= C b n ( x ) [ ( ( b n ,  B)), ((6 ell1 

=E b n ( x ) [ b n  le3 

= O  

n 

n 

since 6 ,  E KZ. Because e was arbitrary this implies B ( x )  h E so that B(x)  E centre(%). 
Similarly E is also central. 

Conversely, if 

is the expansion of 
did, then for arbitrary e and n 

in terms of a basis for a then no component of can h%, for if it 

[ b : , l e ] = ~  ( ( S J n ,  e) )  = o abn = 0, 

whence b‘, E K2,  whence in = 0 by (A.6). 
Another way to express this resultsays that the ‘commutator product’ [ I ]  is a 

non-degenerate bilinear form on a x  89, which means that by a proper choice of basis 
functions E and can be resolved into linear combinations of boson creation and 
annihilation operators of the usual sort. 

Before making this resolution explicit, let us note that we can now characterise 
centre(%) as the subalgebra %’ of % generated by I? and B. For on one hand we know 
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that these commute with 2, while on the other hand any expression involving 
components of and B in an essential way (i.e. so that they do not drop out because of 
(3.2)) involves creation or annihilation operators and will not commute with all other 
expressions involving such operators (as follows from the usual theory of ‘second 
quantisation’). Thus we can identify the set of superselection rules with any indepen- 
dent set of components of l? and B, that is with any basis for K i -  and K i p .  But 
according to the appendix (A.15), (A.16) 

K:- =Hz(X ,  R)* 

Ki- =HI(%, R), 
and 

which shows that every ‘possible’ superselection rule of the type discussed in 0 4 occurs 
and that no other ones are possible. 

Returning to the problem of diagonalising the commutation relations, let us define? 
for e E S9 

(5.6) 
(Notice that e is still a real function.) Since z, a and K z  are mutually orthogonal it is 
clear that only and 6 will contribute to (5.6); conversely it is also clear that one can 
recover 

I- 

a (e) = ((e, E ) )  +i((de, B ) ) .  

and 6 from the a ( e ) .  We have (using (5.3) and (5.4)) 

[ a h ) ,  a(ez) l= i[((e~, E ) ) ,  ( W Z ,  B))I+i[((del, B ) ) ,  ((e2, E))] 
= -i[dez I el] + $del 1 e2] 

= -((dez, del)) + ((del, de2)) 

= O  
and 

[ a (ed ,  a ( e ~ ) * l  = -i[((el, E ) ) ,  ((dez, B))I+i[((del, B)), ((ez, €))I 
= ((de2, del)) + ((del, ded) 

= 2((de1, de2)). (5.7) 
I claim that this last expression is a non-degenerate quadratic form on the function 

space S9 . For, if ((de, de)) = 0, then since (( , )) is itself non-degenerate, de = 0 
whence e E &% n K z  = 0. Letting (e,,) be a basis for orthonormal with respect to 
the form (5.7) gives at last the commutation relations in their familiar form: 

tl a ( e m )  [ a ( e m ) ,  a*(e,,)l=Sm,,. 

2- 

Finally, consider how our decomposition of Fwy depends on the choice of hypersur- 
face with respect to which the decomposition is carried out. For simplicity, let us deal 

t This is not the only way, but only the simplest way to diagonalise (5.3). A more useful definition in practice 
would be 

a ( e )  = ( ( e ,  E ) )  - i((dA-’e, B)) 

which both destroys photons ‘in state e’ and accomplishes a simultaneous diagonalisation of the ’Hamil- 
tonian’. 

Notice also that, strictly speaking, it is not at all evident that (5.6) really makes sense for every e E =since 
it can happen that de isnot square-integrable even though e is. In the remainder of thissection I will ignore all 
such problems having to d o  with the unboundedness of the operators d ,  S and A. 
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with an irreducible representation of 2l in terms of operators in some Hilbert space, so 
that the central elements of !?I become mere scalar multiples of the identity ( c -  
numbers). 

If we write F = F’I+p‘ for the decomposition with respect to one hypersurface 2 
and propagate separately E’ and p’ to all of M via Maxwell’sequations (noting that both 
8’ and satisfy the initial-value constraints on X’),  then we get two separate solutions 
of the field equations, the second of which is a pure c number and the first of which 
therefore could itself be a complete solution to our problem (i.e. to (2.4), (2.5), (3.2) and 
(3.4) (and therefore to (3.5) as well)). Were we to decompose F with respect to a 
different hypersurface W ,  then, although E and P would change, we would have 
P-8’=F’-Ftf= c-number field. In other words the ‘radiative’ part i; of F is 
invariant up to the addition of certain c-number solutions of Maxwell’s equations. 

Even in flat space-time one has the freedom to add an arbitrary c-number solution 
to Fwy(x) ,  only in that case such an addition produces a unitarily equivalent set of 
operators, affecting only the identity of the vacuum state. The change from E‘ to E“ is 
precisely of this type, as follows from (3.5) applied to R, and can therefore be 
interpreted in terms of creation of photons in a coherent state. 

But adding to F a c-number solution with non-zero flux integrals-which is possible 
only when space-time is multiply connected-cannot produce a unitarily equivalent 
theory (the flux integrals being c numbers and therefore unitarily invariant). Instead it 
‘takes one to a different sector of Hilbert space’. 

6. Conclusion 

According to (3.2) the condition for microscopic causality, F g y ( x )  Folp(y)  is guaran- 
teed whenever x # y lie on a single Cauchy hypersurface. But because Maxwell’s 
equations propagate information within the light-cone, it follows that in  fact 
F ( x )  F ( y )  for a n y  pair of points which are not joined by a causal curve. 

Within its restriction to space-times, admitting Cauchy hypersurfaces (such a 
space-time is necessarily homeomorphic to X X R where X i s  any Cauchy hypersurface) 
our theory therefore incorporates the following features. 

(1) It is defined in terms of local field variables F,,(x).  (Thus it is trivially gauge 

(2) The Fwy fulfill Maxwell’s equations. 
(3) Microscopic causality obtains. 
(4) The integrated stress energy, P[& XI, generates deformations of the Cauchy 

That all these features are present argues strongly (but certainly not, in the absence of a 
uniqueness theorem, conclusively) in its favour. 

Within this theory we have been able to account fully for the influence of the 
topology on the quantum algebra. In particular, superselection emerges as a natural 
consequence of features (2) and (3) above. More generally, the algebra % generated by 
the Fwy splits (in a way largely independent of hypersurface) into a product of two 
factors, one of which is a ‘Fock algebra’ of the usual sort, and the other of which 
constitutes the centre of !?I and reflects precisely the homology of X, 

An objection to the present theory might be that, because there is n o  vector 
potential, the field cannot interact with charged particles. However, Mandelstam 
(1962) has described a theory with interaction but without the vector potential. But 

invariant.) 

hypersurface X. 
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even without this the present theory furnishes a model for charge 'coupled' automati- 
cally to the electromagnetic field. Full quantisation of this model (namely quantisation 
of the metric!) would produce a theory with the Lorentz force and therefore should 
incorporate somehow an effective vector potential. One could then see whether all the 
consequences of such a potential (e.g. the Bohm-Aharonov effect) were present. It 
even seems likely that the existence of an effective potential could be deduced already 
on the basis of the present theory, making use of the division of the field into 'radiative' 
and 'Coulombic' parts as described in 0 5. 

Finally one can ask: can the theory be freed from its 3 + 1 form and especially from 
the need for Cauchy hypersurfaces? This question is of particular interest because it 
turns out, by an extension of the analysis of Sorkin (1977), that (for axial FNY) magnetic 
monopoles can occur classically if and only if space-time lacks time orientability. 
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Appendix. Asymptotically-flat Hodge theory 

We consider various spaces of forms (totally skew covariant tensors) defined on a 
Riemannian manifold M of dimension N and with asymptotically-flat positive-definite 
metric g j k .  (For application to the main body of the paper M, N and g j k  would be 
respectively X, 3, and Y j k . )  In more detail, we distinguish that 

g P ( M )  = {w 1 w is a C" form of rank p (p-form)) 

8 ( M ) =  @ g P ( M )  
N 

p = o  
(the direct sum of the 8') 

8 + ( M )  (respectively 8 - ( ~ ) )  = {U E 8 ( ~ )  I w is polar (respectively axial)} 

GBP(hf) = {w E 8 ' ( M )  I support (0) is compact} 

and similarly 9 ( M ) ,  9 * ( M ) ,  Z P * ( M ) ,  9 ' * ( M ) .  Clearly, 

Z ( M )  = 8 + ( M )  0 K ( M ) .  

There are also linear operators d, S ,  A defined by 

(dw)jk ... I = vj A wk ...I 

= vpk ... 1 -V kwj ... 1 -t * * * * V  lwk ... j r  

where V j  is the covariant derivative, 

(Sw)k ... 1 = Viwjk ... l 
A = dS + Sd. 

With respect to the 2' scalar product 
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(where ’w is the component of w in 8’(M))  one checks readily that the adjoint 

d* = -8 (A.5) 

whence also A* = A. Also, of course, d2 = 0 = S 2  so that d 
The operators d and S are dual not only with respect to the scalar product (A.4) but 

also with respect to the so called * operator which converts between 8’ and %“-’ by 
means of the alternating symbol ei...k. Note also that * preserves the 9’ norm while 
reversing parity (i.e. exchanging 8’ with 8-). 

A, 6 A. 

Finally we define certain spaces of so called ‘harmonic’ form by 

K = { U  E 8 / d o  = O =  Sw}? 

= completion of 9 in the YZ-norm 

K 2 = K n G  

K:’ = K2n 8’*. 

Note that, as discussed more fully by de Rham (1960), G can also be described as the 
space of forms whose coefficients are LZZ-functions in the sense that ( (U,  w ) ) < c o .  If 
S c g is any subset then ‘3’ will denote the closure of S in the (real) Hilbert space g .  

With these definitions we can now quote the theorem which authorised our 
decomposition of E and B into ‘radiative’ and ‘Coulombic’ parts in 0 5. 

Kodaira theorem. 

G =a @ @ K2. 

Furthermore, if 

w = w l + ~ z + ~ 3  (A.7) 
is the corresponding decomposition of w E 9 then d o  = 0 (respectively Sw = 0) e w2 

(respectively w l )  = 0. 

Proof (see theorem 24 of de Rham (1960)). In the sequel we will also need the regularity 
results 8 n a c  d 8  and dually 8 n a c  88, for which see theorem 14 of de Rham 
(1960) together with theorem 24 and the surrounding discussion. 

The rest of this appendix will discuss in detail the relation between KZ and the 
homology of the topological space M. From now on we assume that N = 3 although 
everything would work for N > 3 and almost everything for N = 2. 

Recall that in RN, d is exact in the sense that w E 8 ’ (RN)  and dw = 0 imply (unless 
p = 0) that w = dR for some R E 8’- ’ (RN).  Notice also that if, in this situation, R E 
then the condition that ((a, R)) be minimised subject to dR = w is (as is easily checked 
using (AS)) that Sa = 0, a fact which may help to explain the proof of the following. 

Lemma 1 .  Let M = E3 (:= R3 with Euclidean metric) and suppose that dw = 0. Then 
(1) 6w E 9 3 w = d p  + y with p E O ( r - ’ ) ,  d p  E O(r-’) ,  and A y  = 0; 
(2) 60 E 9 and w E G I$ y = 0 in (1); 
(3)  w E 9 3 w = d p  with p E O(r-’), d p  E O(rY3). 

+ T h e  other common definition, Pw = 0, leads, in our situation, to the same notion of K2 (theorem 26 of de 
Rham (1960)). Incidentally, in the present context ‘harmonic’ is a particularly inapt term since elements of K 2  
correspond, as we have seen, precisely to those components of the field which are not analogous to 
quantum-mechanical harmonic oscillators. 
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Proof. (1) Suppose there are p, y as required and suppose for a moment that Sy = Sp = 
0. Then Ap = 0 + S d p  = S(w - y )  = Sw. Because in (E3 

a2 a2 a2 
a x 2  a y 2  az2'  

A=-+-+- 

We can solve this using the potential of a point charge, G(x)  = - ( 4 ~ r - ~ ~ ~ x ~ ~ - ~ :  

(A.8) 

Since the integrand vanishes for y outside the compact set supp(Sw), (A.8) is well 
defined and /3 and d p  are respectively O ( r - ' )  and O ( r - 2 )  as r + m .  Moreover if 
y = w -dB then (using that d A and that d o  E d d 8  = {0}) Ay = Aw - A  d p  = 

(2) By ( 1 )  d p  has a finite 9'-norm. If w does as well then so will w - d p  = y. But in 
[E3 the only V2-solution of Laplace's equation is zero. 

(3) Since 9 c G and 89 c 9 the conditions of ( 1 )  and (2) are fulfilled. Moreover, 
since w has compact support we can switch the derivatives in (A.8) onto G, which 
produces the extra asymptotic power of l / r .  0 

daw - dAp = d(6w - AB) = 0. 

Remark. Although we never proved (nor used in the proof) that Sp = 0, it is in fact true 
since ASP = SAP = SSw = 0, of which the only O ( l / r )  solution is Sp = 0. 

Corollary 1 .  If w E %'(E3), d o  E 9 and p > O  then 3a E 8'-' and p €3 such that 
w = P + d a .  

Proof. Apply ( 3 )  of the lemma to Cl := d o  to conclude R = d p  with p E O ( r - 2 ) .  Plainly 
( (p,  p ) )  is finite so that p E G. Moreover d(w - p )  = 0 j w - p  = da for some a E 

To prove the three theorems which follow we will need the last two results not only 
%'-I. U 

for IE3 but also for three-manifolds which deviate slightly from perfect flatness. 

Proposition. Both lemma 1 and its corollary are valid for M near enough to (E3 in the 
space of asymptotically-flat three-metrics. 

Proof. Our proofs used only that G(x)  - l / r  and that Laplace's equation A o  = 0 has no 
non-trivial solution which vanishes at infinity. But these seem intuitively true and in 
fact resultst in essence the same as those we need follow from the theory elliptic 
operators as described by Cantor (1977).  

Our aim being to relate K 2  to some purely topological invariant, let us define 
H ( 8 ( M ) ,  d) as the quotient space Z / d 8  where 2 = {w E 8 Idw = 0). (Similarly 
H ( 8 ,  d, -, p ) ,  for example, comprises equivalence classes of axial p forms, and would 
be defined as 

{w E 8'- 1 dw = O}/{da 1 a E 8('-"-} 

(where 65""' := {O}) . )  Such H's are known to depend only on the topology of M in a way 
which we will recall later. 

t For example, theorem 2.9 of Cantor (1977) implies that in any M sufficiently near to E3, the equation 
Ap = p, p E 9 has a unique solution in O(r-'* ')  for each E between 0 and 1. 
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Since K 2  c 2 the prescription ‘ $ ( U )  = equivalence class of w ’  defines a linear map 
$: K2 + H ( 8 ,  d), which turns out to be almost an isomorphism. We will write 

$ ( p 1 : K P + H (  %‘, d, p)  

for the restriction of $ to p forms and similarly $( p)’ for its restriction to Ki* 

Theorem 1. G(p) is surjective for p > 0. 

Proof. Let S c M be a sphere large enough so that, if K is the region enclosed by S then 
M - K is nearly flat-in fact so nearly flat that one can ‘fill in’ the hole in M - K with a 
nearly flat three-ball k to produce a manifold h? to which lemma 1 and its corollary will 
apply. If w is a p form on M with dw = 0 (and p > 0) then extending arbitrarily to all of 
6f the restriction of (0 to M - K produces a p form G such that supp (d;) is included in the 
compact set k. Corollary 1 then furnishes & E %(A?) and @E 9 ( M )  such that 4 = 
6 + dcu‘. Let a be any form defined on all of M and agreeing with & on M - K (= h? - k) 
and set /.3 = w - da.  Since is 2’ Ind since p = p” on M - K, p is also 2*. Appealing to 
the Kodaira theorem, we conclude that p = dP1 t y where y E K2. Combining these 
results gives w = d ( a  + p , ) + y ,  which shows that $ ( p ) ( y )  is the class of w in 

- 

H ( 8 ,  d ,p ) .  0 

Theorem 2. $(p)  is injective unless p = 1. 

Proof. Suppose p # 1 and construct 2 as before. Since plainly K :  = 0 we can assume 
that p 3 2. If + ( U )  = 0 then w = d a  for a E 8’-’. Extend a to k producing cu‘ and set 
2 = d& Since 6 i s9’  (because w is) and 8; E 9(k), (2) of lemma 1 gives us p’ E O(l / r )  
for which d@ = 6, assuring us in addition that & (and therefore w )  is O(l / r*) .  Then 
d(@ -- Oi) = G -6 = 0 whence (since p 3 2) p’ - 6 = d j  for some j E %‘’-’(h?). Returning 
to M (extending y any old way on K and defining p = a + d y )  we find p E ( l / r )  for 
which w = dp. But then ( (U,  U ) )  = ( (U ,  dp) )  = -((So, 0)) = ((0, p ) )  = 0, whence w = 0. 
Here the integration by parts involved in the second equality is legitimate since 
w E O(r-’I, p E O(r-’). 

Lemma 2:. Let S be any internally oriented sphere enclosing K. If M is non-orientable 
then there exists an axial 1-form e E such that 6e = 0 and 

(Here, as always, K is a compact submanifold of M including the region of multiple 
convectivity, so that M - K is diffeomorphic to S 2  x R.) 

Proof. Notice, that according to Sorkin (19771, dSk would have to be polar in order to 
represent an externally oriented surface element. (The question of the weight of d S  can 
be ignored here since in a Riemannian manifold all weights are equivalent.) But then 
the integrand would not be a scalar. In order to be able to talk in familiar terms we will 
fix once and for all an orientation of M - K  chosen so that d S  is outwardly directed 
relative to it. 

i Neither this lemma nor most of the proof of theorem 3 are needed for the rest of the paper. They are 
included only for completeness and for their relevance to Sorkin (1977). 
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Now in the context of Sorkin (1977)  or of §§ 2-4 above, we would have worked with 
gk := G y k ’ e i  in place of e and interpreted (A.9) as saying that K displays unit net 
electric charge. From this we can see how to construct such an e .  Let r: R+M be a 
curve which comes in from and returns to infinity but only after passing through K in 
such a way as to reverse orientation-in other words, to reverse the handedness of any 
vector triad carried continuously along it. (Such a r exists if and only if M is 
non-orientable.) We can assume r meets S just twice, say at x 1  and x 2 .  

Let us interpret r as a ‘line of electric force’ of strength 1 ,  giving it an external 
orientation such that at x 1  it represents (relative to the chosen orientation of M - K )  an 
outward flux through S.  Then, by the reasoning of Sorkin (1977), it will represent an 
equal outward flux at x 2 ,  giving thus a total outward flux through S of 1 .  

Finally we can smear r out into a ‘flux tube’ and outside K fan this tube out into a 
roughly spherically symmetric form looking like the l / r 2  Coulomb field of a unit point 
charge. This is our e :  it is clearly Z2 and Se (the divergence) vanishes because r was an 
unbroken line. 0 

Theorem 3. Let M be an asymptotically flat Riemannian three-manifold. Then 

is an isomorphism in all cases except that 
(i) Ki = 0 whereas H ( 8 ,  d, +, 0) L- R so that $(O)+: {O}+ R;  

(ii) when M is orientable $(O)-: (0)  + Iw; 
(iii) when M is non-orientable $( 1 ) -  is indeed onto H( 8, d, -, 1 )  but has a kernel of 

dimension one. 

Proof. According to the two previous theorems we need consider further only $ ( p )  for 
p = o ,  1. 

Considerp = 0. If w E 8’ and dw = 0 then w = constant. More precisely, if w is polar 
( w  E go+) then w = c E R and conversely if w = c E R  then dw = 0. In other words, 
Z(8, d, +, 0) = R. If w is axial then given a local choice of orientation 0, w can be 
considered as in go+ and therefore = c E R. This locally defined and constant w will 
extend consistently to all of M if (w = 0 or) 0 extends consistently to all of M, which is to 
say if M is orientable. Thus Z(‘B,d, -,O)=R or (0) according as M is or is not 
orientable. Finally if w E Ki then w = constant whence w &  Y 2  unless w = 0, confirming 
that K t  ={O}. 

Consider p = 1 .  By theorem 1 $(1) is onto but if $ ( U )  = 0 the p = 1 version of the 
proof of theorem 2 breaks down where we are to conclude that 6 - & = d j .  Neverthe- 
less, if w is polar then d ( a  - &)  = 0 3 = ai + c for c E R, whence p := a + c defines on 
M a O ( l / r )  0 form for which w = dp. From here on the proof that U = 0 proceeds just 
as before. Even if w is axial the proof will still work as long as M is orientable, for by 
orienting M we obliterate the distinction between axial and polar. 

But if M is not orientable the most we can say is that by choosing an orientation for 
fi (or, what is the same, for M - K )  we can regard ci - 6 as a constant c E R, which, 
however, does not extend to an element of Z ( E ( M ) ,  d, -, 0) unless c = 0. Call this 
constant 4 ( w ) .  (In other words 4 is defined by the relation 4 ( d a )  = limx.+m a(x ) . )  I 
claim that 4 is a linear isomorphism of kernel $(O)- onto R. 

To show 4 is well defined it suffices to show that 4 ( w )  = 0 if w = 0. But if d a  = 0 then 
a E Z(8, d, -, 0) = (0)  3 (r = 0 3 lim a ( x )  = 0. To show 4 is injective suppose 4 ( w )  = 



420 R Sorkin 

0. Since this means 6 = 6 it entails a E O(l/r),  which in turn implies w = 0 just as 
before. Finally, to show q5 is onto R it suffices, since q5 is into, to show that kernel @ is 
not trivial. But if a is any axial 0 form which equals one in M - K (relative to the chosen 
orientation there) and (for example) falls smoothly to zero in K then d a  E 9 c and 
d(da)  = 0, whence, from Kodaira, d a  = y + w with w E K2, y E B. Now if e and S aye as 
in lemma 2 then 

((da, e ) ) =  IM(8,a)e’ d V  

= $s ae’ dSi - a& d V 

= $ e ’ d S i = l .  

On the other hand if p E 9 and S includes support ( p )  U K then ((dp, e))  = 4s p e’ dSi = 
0, whence if p,, E 9 is any sequence such that dpn -+ y in the 2* norm then ((7, e)) = 
((lim dP,,, e ) )  = lim((d&&) = 0. Comparing these results shows y # da,  i.e. w # 0. But 
@ ( w ) = O  because y e n d 9 c d 8 3 w ~ d 8 .  0 

In concluding this appendix, let us recall from de Rham (1960) some basic 
isomorphisms subsisting among the vector spaces H ( ,  , ,) and connecting these spaces 
to the topology of Mt. Even without reference to de Rham (1960) it is clear that the 
* operator induces dualities 

H(8Crespectively 91, d, i, p )  =H(8[respectively 91, 6, T, N - p )  
(A.lO) 

K;* _K$N-dT (A. 11)  

The analogous relations corresponding to duality induced by (( , )) are 

H(8 [91 ,d ,  *, P )  -H(9[81,& f 9  PI” (A.12) 

K$* =(K;*)* (A.13) 

where ‘ V*’ means the vector space dual of V, 3‘( V, R). 
Finally, each of the spaces H ( A ,  B, f, p )  where A = 8 or 9, B = d or 6, and 

0 6 p d N can be equated to an appropriate homology or cohomology group as follows: 
6 t, homology; 
docohomology; 
9 ++finite chains (or co-chains of compact support); 
8 t, infinite (but locally finite) chains (or arbitrary co-chains); 
+ t, real coefficients; 
- tf ‘axial coefficients in R’ (‘chaine paire’ of de Rham (1960)). 

In particular 

H(%S,  +, P )  -H,(M, RI, 

the ordinary p-dimensional homology group of M with real coefficients. 
The above relations, along with theorem 3, allow us to equate any one of our H (  )’s 

to one of the topological invariants H,(M, W)). In particular, we can verify the 

t But beware of de Rham’s terminology. He sometimes but not always uses the words pair and impair 
oppositely to how others would use polar (or vue) and axial (or pseudo). 
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isomorphisms referred to in Pd 4 and 5 :  

H ( 8 , 6 ,  -, l ) * = H ( 9 , d , - ,  1 ) -H(9 ,S ,  + , 2 ) - H 2 ( M ,  R) 

K i -  =K:' - H ( 8 , d ,  + , 2 ) = H ( 9 , 6 ,  +,2)*=H2(M,  W)* 

(A.14) 

(A.15) 

K : -  =(K:-)*=(K: ' )*=H(8,  d, +, 1)* =H(9,S, +, l)=Hi(M, R). 
(A.16) 

Finally the 'axial homology' or 'homology with externally oriented chains' which is 
relevant to magnetic superselection rules corresponds, by the above rules, to 
H ( 9 , 6 ,  -, 2) and thus to H ( 8 ,  d, -, 2)* - (K:-)*. Comparing with (A.16) 

(A.17) H(9,S, -, 2) -H1(M, R). 
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